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Abstract 

This paper  investigates  issues  related to robot  calibration  with  planar  constraints  and, 

in particular  observability  conditions  for  the  parameters  of  the  kinematic  model  of  the 

robot.  Both single-  and  multiple-plane  constraints  for  robot  calibration  are  considered. It is 

shown  that  a  single-plane  constraint is n o d y  insdlicient for  calibrating  a  robot. It is 

also shown  that by  using a three-plane  constraint,  the  constrained  system  is  equivalent to 

an  unconstrained  point-measurement  system  under  certain  conditions.  The  significance of 

this  result is that  one  can  use  the  three-plane  constraint  setup to successfully  calibrate  a 

robot.  Simulation  results  are  provided  that  veri@  the  theory  presented. 
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1 Introduction 

Robot  calibration  is  a  process of robot  accuracy  enhancement  built to a  high  level of 

mechanical  repeatability. It encompasses  compensation  for  absolute  accuracy  deficiencies 

using  internal  compensation  software.  Basic  steps  in  a  robot  calibration  task  include 

kinematic  modeling,  pose  measurement,  identification  and  compensation [ 1 1. This paper 

focuses on the  measurement  phase of robot  calibration. 

Various pose measurement  methods  for  robot  calibration  have  been  developed  by 

researchers  and  practitioners.  Researchers  have  also  been  looking  for  ways to self- 

calibrate  robots  without  explicit  measuring of robot  poses.  Self-calibration  may be done 

using two alternative  strategies.  One  is to install  additional  redundant  joint-level  sensors to 

the  robotic  system to facilitate  measurement  data  collection [ 2-3 1. An alternative 

strategy is to impose  some sort of motion  constraints on the  end-effector of the  robot. 

Bennett  and  Hollerbach [ 4 ] proposed  a  closed-loop  calibration  method  in  which  the 

robot  endpoint  is  kept  fixed.  Mooring  was  first to propose to the  use of a  planar  constraint 

to calibrate  a  laser  scanner [5]. Zhuang et a1 [ 6 ] used  planes to constrain  the  target 

motion  for  the  calibration of a  multiple-beam  laser  tracking  system. Ikits and  Hollerbach [ 

7 3 extended  their  Implicit  Loop  Method to the  plane  constraint  method.  Recently,  a 

method to calibrate  a  Stewart  platform  using date collected  solely by robot  internal 

sensors has been  proposed by  Khalil  and his coworkers [SI. 

A planar  constraint  method  for  robot  calibration may be classified  into  single-plane 

and  multiple-plane  constraints. In this  paper,  parameter  observability  issues  associated 

with  both  methods  are  explored.  The  results  can  be  applied to robots as well as other 

programmable  machines. It is shown in this  paper that whenever  a  single  plane  constrains 

the  robot  motion,  the  calibration  result is biased  because  the  measurement  data is 

projected to a  particular  direction.  Furthermore,  a  single-plane  constraint  does  not 

necessarily  guarantee  the  observability of unknown kinematic  parameters of the  robot. 
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A multiple-plane  constraint is a  remedy to this  limitation. It is  shown  in the paper  that 

under  certain  conditions,  data  collected by a  three-plane  constraint  setup  is  equivalent to 

that by a  point  measurement  device.  The  significance of this  observation is that  one may 

replace  a  3D-position  measurement  system by a  plane  placed  at  a  number of different 

orientations.  The  calibration  strategy of using  a  multiple-plane  constraint is demonstrated 

on a PUMA 560 robot  model. 

2 Problem Formulation 

With a single  planar  constraint,  the  calibration  problem  is  reduced to an optimization 

problem of minimizing  a cost h c t i o n  C of the  type 

where ri is the  vector of the  coordinates of the ith point on the  plane, m is the number of 

points, n is  the  plane  normal, d is  the  distance fkom the  origin to the  plane, p is a  vector 

consisting of all the unknown parameters of the  calibrated  system  and 0 is the  vector 

containing  the  measurements.  Unlike  the case of using an external  measuring  device to 

obtain  pose  data, rf in  this  case is not  explicitly  measured  but  is  rather  computed  using  any 

suitable  forward  kinematic  convention of the  robot  characterized by the  set of kinematic 

Parameters p. If the  target  motion  is  constrained to multiple  planes,  the  above  cost 

function  is  extended to 

where r,., represents  the  coordinates of the ith point on plane s in  a  reference  frame, n, is 

the ith plane normal, d8 is  the  distance  from  the  origin to the sth plane, m, is the number of 

planes,  and m, is  the  number of points  taken fiom the sth plane.  The  problem is to estimate 
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p so that  the  above hc t ion  is  minimized. In the  case  that  the  plane  is  placed in unknown 

locations,  the  plane  parameters  must  also be estimated  along  with  the  robot  parameters. 

3 A single-plane constraint 

3.1 The system  setup 

A schematic  setup of calibrating  a  general  machine  system  using  a  single-plane 

constraint is shown  in  Figure 1. 

In order  for  the  method to work, it  is  assumed that the  machine  is  capable of moving 

its  tool-tip on the  plane, ve-g proper  contact  between  the  tool-tip  and  the  plane,  and 

collecting  its  internal  joint  position  sensor  reading at each  joint  configuration.  The  number 

of points  measured  should  exceed  the total number of parameters to be  calibrated  in  the 

entire  system.  The  physical  nature of measurement  varies fiom one  machine to another. In 

a  laser  tracking  system,  a  retroreflecting  target  is  moved  along  planar  constraints, as the 

gimbal rotation  angles  and  the  interferometric  relative  distance  reading  between  the  laser 

tracker  and  retroreflector  are  recorded. In a  robotic  manipulator  system,  the  end-effector 

sensory  system may take the  form of a  simple  limit  switch  activated  upon  contact  with  the 

surface, or a  proximity  sensor  (such as a  laser  "pen",  which  indicates  the  distance  between 

the tool and  the  surface).  The  recorded  data is that of the  robot  joint  positions.  The 

constraint  plane  defines  a  coordinate  fiame  that is different fiom the  machine  base 

coordinate  fiame.  Although  either  one of the  coordinate  fiames  can be chosen as the 

reference  fiame,  different sets of observability  conditions  for  the  system  parameters  can  be 

derived. 
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System 

/ Base  Coordinate  System 
for the  Machine 

Figure 1 The  system setup of robot  calibration  with  a  single  plane  constraint 

3.2 Observability  issues  with  known  plane  parameters 

Let  us  first  assume  that the constraint  plane  is  placed  in  a known position  and 

orientation  with  respect to the  reference  coordinate  fiame. In other  words,  it is assumed 

that  the  plane  parameters  are known a priori in  the  reference  coordinate fiame. To  study 

the  observability of the  calibrated  system,  it is necessary to derive an error  model of the 

system. 

For m points  measured on the  plane,  the  measurement  equation  becomes 

nrr(po ,ei)+ CI = 0 

where i is  the  point  index  between 1 and m. The  augmented  machine  parameter  vector  is 

p,=[P', aT, pqT where a and p represent  the  orientation and position  parameter  vectors 

of the machine  base  system in the plane  coordinate  system  (shown  in  Figure l), and p is 

the  kinematic  parameter  vector of the  machine. 
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Linearization of (3) about  a nominal  kinematic  parameter  vector pa = p." yields: 

-nTJ(pa,Bi)dpa  =nTr(pa,Bi)+d ( 4 )  

where J is the  Identification  Jacobian [ 1, 8 ] of the  corresponding  unconstrained  system'. 

The  Jacobian of the  constrained  system  can  then  be  obtained by stacking  the  Jacobians - 

nTJ(p,4 &), i = I ,  2, . . ., m, fiom top  to bottom,  which is 

- NJadpa = NR+ D 

rnT o ... o 
o nT ... o 
: 0 ". i 

where N = . 

L o o ... nT 

9 

imx 1 

It is  assumed  that  the  number of measurements m is always  no  less  than  the  number 

of unknown parameters;  otherwise,  the  Identification  Jacobian  matrix NJa is  singular. 

Equation (5) is  a  first-order  differential error model  that  relates  the  parameter error vector 

to the  measurement  vector NR + D. To  facilitate  the  discussion of the  observability of the 

system,  let  us  modify (4) slightly.  Let J, = [j,' jyT j,' 1' , n = [ n,  n, n, 1' and r = [ r, r, 

r, I T ,  wherejx , j ,  , j ,  are 1 xq vectors.  Then ( 4 ) becomes, 

' Unconstrained  system  here  means  that  the  robot  end-effector is not  confined  to  move on a  plane  and  the 

full pose  data of the  robot is obtained  using  an  external  measuring device. 
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- (n, j ,  + n, j , ,  + n, jz)dpa = n,r, + nyry + n,r, + d ( 6 )  

The  reference  coordinate  system  can be assigned  in  an  arbitrary  way  without  loss of 

generality.  Assume  for  example  that  the  plane  lies on the yz plane of the  coordinate 

system.  Therefore  the  plane  normal  vector n is a unit vector [ 1 0 0 3'. Equation ( 6 ) is 

then  reduced to 

- j ,dpa z r ,  + d 

Either ( 6 ) or ( 7 ) provides  a  scalar  measurement  equation. To be able to compute 

dpa, at  least q measurements  must be taken.  Let G = [ A I T ,  j x , 2  T, . . ., j,, ] . It is  the 

Identzcation Jacobian of the  constrained  system.  Obviously,  for  each  point, G only  picks 

up the  rows  corresponding to the x element of the  Jacobian of the  unconstrained system 

The  observability of the  augmented  tracker  error  parameters  is  determined in terms 

of  the structure of G.  G, which  is  a  submatrix of the  Identification  Jacobian  of  the 

unconstrained  system, is required to be nonsingular. This implies that as a  necessary 

condition  for  the  constrained  system to be observable,  the  unconstrained  system  should be 

observable.  Moreover,  even if the error parameters  of  the  unconstrained  system  are 

observable,  those of the  constrained  system may not.  This  is  because  even if J, is 

nonsingular, G, which  is a  submatrix of J,, may still be singular.  Let  us  assume  without 

loss of generality  that  a  fixed  coordinate  transformation is introduced  such  that (7) is valid. 

It is obvious  that if r, is  not  a  function of some  of the kinematic  parameters of the  robot, 

the Identification  Jacobian wiU be singular. In other  words,  these  parameters will be 

unobservable.  The  following  example  illustrates  this  point. 

Example: Consider  a 3 DOF SCARA arm having a RRP joint  conliguration.  Let us 

further  assume  that  the  only  kinematic  parameters to be calibrated are the joint  offsets.  Let 

us  assume  that  the  plane is placed  such  that  its  surfhce  normal is pointing  in  the x 

direction.  Clearly, rx is  not  a hc t ion  of the  offset of the  prismatic  joint,  therefore  the 

prismatic  joint  offset is not  observable. 
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In conclusion,  a  single  plane  constraint is often  insufficient  for  calibrating  a  robotic 

manipulator. 

3.3 Observability  issues  with  unknown  plane  parameters 

There  are  situations  in  which  the  reference  frame  cannot be defined  within  the 

constraint  plane. In this  case  the  plane  parameters  n  and d can no  longer be assumed to be 

known. Since (n,  d) constitutes only  independent  parameters,  we  may fix d at  its 

nominal value  and  assume  that  the  plane  normal  is  not  normalized.  The unknown 

parameters of the  plane are represented by n. Recall  that  the  plane  equation is 

nT . r (p0 ,8 )+d  = O  

The  error  model of (8) is then, 

-r(p0,B)Tdn-nTJ(pQ,8)dp z nTr(p0,8)+d ( 9 )  

If m points  are  measured on the  plane,  the  Identification  Jacobian of the  constrained 

system  can be written as 

where R = 

- 

, N =  

mx3 b 

I t T  o ... 0 
o nT ... o 
i 0 ". i 
o o ... nT 

, J =  

mx3m 

By examining the  structure of the  Identification  Jacobian  given  in (lo), one  observes 

that  in  addition to the  necessary  condition  that  the  unconstrained  system  must be 

observable,  another  condition  must be met;  that  is,  measurement  points  must  not  all  lie on 

a  plane  passing  through  the  origin of the  coordinate  frame ( refer to Figure 1). Since  the 

measured  points  are on a  plane,  this  condition  is  equivalent to that  the  measured  points on 
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the  plane  must  not  all  lie on a line. If the  condition  is  violated,  matrix R becomes  singular, 

resulting  in  a  singular  Identification  Jacobian. 

4 A Multiple-plane Constraint 

The  insufficiency of having two  planar  constraints  (for  calibration of a  robotic 

manipulator)  can be established  along  the  same  arguments  used to illustrate  the 

inadequacy  in  general of a  single  plane  constraint.  Therefore  a  “multiple-plane  constraint” 

in  this  paper will always  imply that  the number of planes is no  less  than  three. 

4.1 The System  Setup 

A schematic of the  robot  calibration  with  multiple-plane  constraints  is  given  in the 

following  figure. It is  assumed  that  the  planes can be placed  at  any  place  in  the  space. 

Similar to the single-plane  constraint,  the  machine  measures  a  certain  number of points on 

each  plane  respectively.  From  Figure 2, it is noticed  that  each  plane has its own coordinate 

fiame  while  the  machine has its  base  coordinate fiame. In the  calibration  process,  either 

one of the  planar  coordinate  fiame or the  machine  base  coordinate  fiame will be chosen as 

the  refkrence  fiame  for  the  entire  system. 
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Plane III Frame 

Plane I1 

Base Coordinate  System 
for the  Machine 

Figure 2 The  system  set of robot  calibration  with  multiple  plane  constraint 

4.2 Observability  issues  with  known  plane  parameters 

In this  section,  it is assumed  that  the  plane  parameters  are known apriori. There  are 

three  planes  in  the  system  and m points  measured on each  plane. In order to estimate  the 

unknown parameters,  the  number of measurements  in  this  case  must be no  less  than  one 

third of the number of unknown parameters of the  robot.  The  observability  condition of 

the  constrained  system is revealed in the  following  theorem. 

Theorem 1. Assume  that  all  measurements are constrained to lie on three  mutually  non- 

parallel  planes.  The fidl set of error parameters can be  made  observable if the following 

Jacobian mtrix is nonsingular: 
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where J l J  is drawn fkom the  Identification  Jacobian of the  corresponding  unconstrained 

point-measurement  system. 

The  proof of the  above  theorem  can be found in the  Appendix.  The  significance of 

this  theorem is that as long as the  three  planes are all  mutually  non-parallel,  the 

constrained  system  offers  the  same  amount of information as an unconstrained  position 

measurement  system, as long as the  plane  parameters are known in  a  reference  plane. 

4.3 Observability  issues  with  unknown  plane  parameters 

As a  straightforward  extension to three  unknown  planes of the  single  plane 

constraint  case,  a  necessary  condition  for  the  unknown  parameter  vector to be observable 

is that measured  points  taken fkom each  individual  plane  must  not  all  lie on a  line on that 

plane.  We thus have the  following  necessary  conditions: 

1.  All three  planes are mutually  non-parallel, 

2. The  Identification  Jacobian of the  unconstrained  system is nonsingular,  and 

3. Measured  points fiom each  individual  plane do not lie on a  line on that  plane. 

5 Calibration of a PUMA Robot 

The  simulation  results  shown  in this paper wiU focus only on the  multiple-plane 

constraint  case  since  it  was  observed  in  Section 3.2 that  a  single  plane  constraint  often 
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does  not  provide suflicient constraints  for  error  parameter  identification. In the 

simulation, Puma 560 robot  is  used as a  test  bed.  Readers are referred to [lo] for  more  a 

detailed  description. 

5.1 Kinematic  modeling 

Similar to [7], Hayati's  modified  D-H  kinematic  model  was  adopted  in  the 

simulation.  Let  one of the three  planes be roughly  perpendicular to the  first  robot axis. The 

base  frame is numbered as -1.  The  remaining coordinate  fiames (0) to (6) are placed on 

the six links of the Puma 560 robot.  The  definitions of frames (0) through (6) follow  the 

standard  DH  representation  except  for  fiame (2) of the  shoulder axis. Figure 3 shows  the 

entire  set of coordinate  frames.  Figure 4 gives  a  detailed  description of frame { -1 1 through 

{ 2). Frame (2) uses  a  modified  DH  representation  (Hayati's  modification)  since  joint 2 is 

nearly  parallel to joint 3. After  establishing  the  above  coordinate  systems,  the 

transformation  matrix  relating  fiame (6) to frame { -1 1 is  represented as product of basic 

homogenous  transformation  matrices: 

where -1 T6 = [ ] . The  measured (or computed)  end-effector  position 
n o a y  

0 0 0 4x4 

vector  is 

r = q  
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Figure 3 Coordinate  systems of a PUMA560  robot 

740.0mm: : 

Figure 4 Coordinate  systems of the  Planes 
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5.2 Simulation Design 

Section 5.1 defines only one of the  three  constraint  planes. 

Table 1 outlines  four  setups of the remaining two  planes  used  for  calibration  and the 4'h 

plane  for  verification. In the  first  setup,  the  second  plane  was  obtained by rotating  the  first 

plane  about  the x axis 10" followed by a  0.3m  displacement  in  the z direction.  The  third 

plane is obtained by rotating  the  first  plane -10" about  the x axis and 5" about  the y axes 

and a  displacement  0.5m  along  the z axis. This  setup  is  illustrated  in  Figure 5 .  A 4'h plane 

was  created to veri@  the  calibration  results.  The  verification  could also be done  in  a  3D 

space  without  loss of generality.  The 4* plane  was  generated by rotating  the  first  plane 5" 

about  the x axis and 10" about  the y axis translated  0.5m  along  the z axis. 

In the  second  setup,  the  angles  between  the  planes  were  deliberately  increased to see 

if it  would  improve the  condition  number of the  Identification  Jacobian.  The  detailed 

operations are given  in  Table 1.  For  the  same  purpose,  in  the  third  setup,  the  angles 

between  the  planes  were  made  very small to see if the  results became  worse. In the  fourth 

setup,  the  three  planes  were  made  all  parallel to each  other to form  a  singular 

configuration.  Simulations  were  done to see if the  calibration  algorithm  diverged  in  such  a 

case. 
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0.5m Pla 
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ne I1 
I I I 

Figure  5 Setup 1 for  the  three  planes 

In the  above  figure, n2 and n3 are  the normals of plane I1 and  plane I11 respectively. 

Table  1  Setup of the  three  planes 

The nominal parameters of the PUMA560 robot are listed in Table 2. These  values 

were  adopted fiom [ 7 1. The  simulated  actual  values of these  parameters  were  obtained 

by randomly  adding 0.0lmm to the  distance  parameters  and  0.01" to the  angular 
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parameters.  According to the  definition of the  coordinates  systems,  there  were 24 

parameters to be calibrated,  including d o ,  a,  6 , al , al , 6 ,  a2,  a2 ,,& , 61 , d3 , a3 , a3, 8, 

, d, , a4,  a ,  6 3 ,  ds , a s ,  as , &$, d, , as . By  applying  the  Singular  Value  Decomposition 

(SVD) on the  Identification  Jacobian,  it  was  found  that  within  these 24 parameters,  only 

23  were  identifiable.  This  observation  was  agreeable  with  that of [ 7 1. Therefore, a was 

excluded. 

Table 2 Establishing  coordinate  systems  for  the  calibration of a  PUMA560  robot 

PUMA  robot arm link and  planar  coordinate  parameters 
i 

0 90.0 0 740.0 0 0 
/3, (de& a, (de@ ai (mm) di (mm) 8, (de@ 

1 ' 1  0.0 0 0.0 I -90.0 I 0 
2 

0 90.0 -20.32  149.09 0.0 3 
0.0 0.0 431.8 0 0.0 

4 
0 90.0 0.0 0.0 0.0 5 
0 -90.0 0.0 433.07 0.0 

In the  simulations,  different  levels of uniformly  distributed  noise  were  inserted to the 

joint  angular  measurements to simulate  different  accuracy of the  measurements.  Three 

types of noise are listed  in  Table 3. Type I represents  relatively  accurate  joint 

measurements  while  type I11 represents  very  rough  measurements.  Uniformly  distributed 

random  noise of 10 p was  injected to the  points  from  the  planes to represent  the  flatness 

and  roughness of the  planes. 

Table 3 Noise  intensity of the  joint  angular  measurements 

TypeI TypeIII  TypeII 
Noise  intensity  in  joint  angles(prad) 

10 10 10 Noise  intensitv  in  ulane  roughness  and  smoothness ( u m )  

I50 IO0 50 
TypeI TypeIII  TypeII 

Noise  intensity  in  joint  angles(prad) 
10 10 10 Noise  intensity  in  plane  roughness  and  smoothness (JAW) 

I50 IO0 50 
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Forty  points  were  chosen on each  calibration  plane.  These  points  were  randomly 

distributed  in  a  0.8x1m2  area on each plane.  Twenty  points  were  generated on the 4* 

plane to veTif4T the  calibration  results. A numerical  inverse  kinematic  model  was  used to 

calculate  the 6 joint  angular  measurements  corresponding to each  point on the  planes. A 

nonlinear  least  squares  algorithm  was  applied to estimate  the  error  parameter  vector dp,. 

After dp, was  obtained,  it was used to modify the  parameter  vector  and  in turn to compute 

the  end-effector  positions of the  robot on the 4* plane.  These  positions  were  compared 

with  the  “actual”  positions to deterrnine  the  accuracy  the  calibration  results. 

5.3 Simulation Results 

Figure 6 shows  the  simulation  result  when  type I noise  was  added to the  simulation, 

the  three  planes  were  placed as in setup I in  Table 1. The  nominal  values of the  parameters 

were  illustrated  in  Table  2. In the  graph,  the x axis represents  the  number of measurements 

used  in  the  calibration,  and  the y axis the  norms of the  difference  between  the  calculated 

and  the  actual  end-effector  coordinates. In some of the  simulations,  the total number of 

measurements  used  in  the  calibration  ranged  from 110 to 120.  This is to investigate  the 

influence of the  number of measurements  used  in  the  calibration on the  system 

performance.  Once  the  algorithm  converges,  the  number of measurements  used  in  the 

calibration has very  little  effect on the  system  performance,  as  shown  in  Figure 6.  It also 

shows  that  the  system  achieved  a  best  accuracy of 0.08mm when  type I noise  was  added 

to the  system. 
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Figure 6 Simulation  results  when  type  I  noise is added 

Types I1  and I11 noise  represent  relatively  more  crude  angular  measurements.  Figure 

7 and Figure 8 show  the  simulation  results  respectively.  When  type I1 noise is added,  the 

best  system  performance  achieved  is 0.18mm which is bigger  than  that of type I noise. 

This is understandable  since  type TI noise is larger  than  type I noise.  When  type TI1 noise  is 

added,  the  system  performance  reaches 0.21mm. In all of the  above  cases,  the  condition 

number  is  between 200 and 500, which  implies  a  well  conditioned  numerical  system. 

ol 0.25 
C .- 
L ; 0.20 
m - 0.15 E 

2? 5 0.10 
E .- 
2 0.05 
2 a 0.00 

110 112 114 116 118 120 
number of measurements 

""- 'maximum 

Figure 7 Simulation  results  when  type I1 noise is added 
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Figure 8 Simulation  results  when  type I1 noise is added 

Setups 11, 111 and  IV  in  Table 1 were  used to investigate  the  robustness of the 

algorithm by  varying the  orientations of the  planes.  The  results are summarized  in  Table 4. 

Table 4 Simulation  results of different  system  setups 

System  Setup 

diverge 0.20 0.07 0.08 Mean Error Norm (mm) 

Setup  IV  Setup I11 Setup I1 Setup I 

The  above  simulations  demonstrated  that  the  calibration  strategy  using  plane 

constraints  is  feasible.  When  the  angles  between  the  orientations of different  planes  are 

relatively  larger,  the  simulation  results  tend to be slightly  better.  When  the  three  planes are 

placed  almost  parallel to each  other,  the  simulation  results  severely  deteriorates. If the 

three  planes  are  parallel to each  other  which  conflicts  with  the  necessary  conditions  for  the 

constrained  system to be  observable,  the  simulation  algorithm  diverges. 
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6 Summary 

In this  paper,  issues  related to robot  calibration  with  planar  constraints are 

investigated.  The  observability of the  robot  calibration  with  single-plane  and  multiple- 

plane  constraints are respectively  explored. It is shown  that  a  single-plane  constraint  is 

normally  not  sufficient to calibrate  a  robot. It is  also  shown  that  by  using  a  three-plane 

constraint,  the  constrained  system  is  equivalent to an  unconstrained  point-measurement 

system  under  certain  conditions.  The  significance of this  observation  is  that  one  can  use 

this  setup to successhlly calibrate  a  robot.  Simulations  have  been  conducted to verifl the 

theory  presented  in  the  paper. 

Appendix:  Proof of Theorem 1 

Proof: It is assumed  that  the  plane  parameters are known a priori. For  the  sake of 

convenience,  the  plane  equations  are  cited  again  here: 

n f r  +d ,  = 0, s = 1,2,3 ( 1 3 )  

Similar to the  single-plane  case,  we  define  the  augmented  machine  parameter  vector 

pa = [p' , a ' , p T  ] T ,  where a and p represent  the  orientation  and  position of the  machine 

base  system  in  the  reference  coordinate  system. p is  the  parameter  vector of the machine. 

The  target  position is a  function of the  augmented  tracker  parameter  vector pa and  the 

joint  vector 8 ; that  is 

Let p,  = pa0 + dp,  where p," is the  initial  augmented  parameters of the  tracker. 

Perturbing  both  sides of ( 14 ), we  get 
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t 

0. 

where J E Vr  . 

Since  the  plane  parameters  are known, we  choose the  three  plane  normal nl, n2, n, to 

be independent. In such  case,  there  exists  a nonsingular matrux A such  that 

Therefore, 

A[n, n2 n , ] =  z ( 1 7 )  

A = [n,  n,  n3]-' ( 1 8 )  

Let  us  pick m points  at  random on  each of the 3 planes.  Wth a total of 3m 

measurements,  the  Jacobian of the  constrained  system  is 

- T  
- 

n1 0 0 ... 0 0 0  
o nf o .-. 0 0 0  
o o nT 0 0 0  

. .  . .  
0 0 0 - * *  nf o o 
0 0 0 .-- o nf o 
0 0 0 -.. o o nT -3mx9n 
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(A-'e,)  0 0 ... 0 0 0 

0 (A-'e2 ) 0 ... 0 0 0 
0 0 (A"e3)T ..- 0 0 0 

0 0 0 - - -  (A"e,)T 0 0 
0 0 0 ... 0 (A-*e2)  0 
0 0 0 ... 0 0 (A"e3)T 

F- 

J 1  

J 2  

J 3  

JIm 

J2m 

J3m 

, .  

e-T 0 0 . * -  0 0 0  
0 e-T 0 ... 0 0 0  
0 0 e-T ... 0 0 0  

. .  . .  
0 0 0 ". e-T 0 0  
0 0 0 .-. o e-T o 
0 0 0 ". o o epT 3mx9m 
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and 

A-T 0 0 ... 0 0 0  
0 A-T 0 ... 0 0 0  

0 0 A-T ... 0 0  0 

0 0 0 A-T 0 0 
0 0  0 ... 0 A-T 0 
0 0  0 ... 0 0 A-* 9mx9m 

Note that F9mx9m is nonsingular i f A  is non-singular. Since nl, n2, n3 are  independent, 

A is non-singular. Now F9mx9m is nonsingular,  it follows that 

Jl  

J 2  

J 3  

J Im 

J2m 

. 3m -9mxp, 

- 

) = rank 

J 

- 
J*X 

J 2Y 

J3z 

i )  
J(3m-2)x 

J(3rn-l)y 

Since 
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- 
JlX 

J2Y 

J3z  

J(3m-2)x 

J(3m-l )y  

It  follows  that  the  full  set of error parameters  can be made  observable ifmatrix 

is non-singular. 
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